Tutorial Nachsitzen: Unterschied zwischen den Versionen

Aus DGL Wiki
Wechseln zu: Navigation, Suche
(kleine Änderungen Rechtschreibung bis Bild Matrixrechnung)
Zeile 1: Zeile 1:
{{Offline}}
 
Dieses Tutorial wird momentan an eineigen Stellen deutlich Ueberarbeitet. Einige Ungereimtheiten beim Lesen sind sicherlich die Folge. Ich wuerde empfehlen in den naechsten Tagen nocheinmal vorbeizusehen, statt das Tutorial jetzt zu lesen. (N.M.)
 
 
 
==Vorwort==
 
==Vorwort==
 
Immer wieder muss ich feststellen, dass viele, die (mit OpenGl) 3D Anwendungen schreiben, nichts mit der Mathematik dahinter anfangen können. Um das Ein oder Andere zu verstehen oder sich selbst überlegen zu können, ist dieses Wissen aber unabdingbar. Ich möchte mit diesem Artikel helfen, diesen Zustand zu beenden und entsprechends Wissen unter euch verbreiten. Dies und  
 
Immer wieder muss ich feststellen, dass viele, die (mit OpenGl) 3D Anwendungen schreiben, nichts mit der Mathematik dahinter anfangen können. Um das Ein oder Andere zu verstehen oder sich selbst überlegen zu können, ist dieses Wissen aber unabdingbar. Ich möchte mit diesem Artikel helfen, diesen Zustand zu beenden und entsprechends Wissen unter euch verbreiten. Dies und  
Zeile 98: Zeile 95:
 
Eine der wichtigsten Matrizen ist die, die nichts macht. Also ein Vertex dorthin Projeziert, wo es sich bereits am Anfang befand:
 
Eine der wichtigsten Matrizen ist die, die nichts macht. Also ein Vertex dorthin Projeziert, wo es sich bereits am Anfang befand:
 
<pascal>
 
<pascal>
V * Matrix = V
+
Matrix * V = V
 
</pascal>
 
</pascal>
 
Schauen wir zurück, wie eine Matrix auf ein Vertex angewendet wird:
 
Schauen wir zurück, wie eine Matrix auf ein Vertex angewendet wird:
Zeile 108: Zeile 105:
 
x_neu := x*1 + y*0 + z*0 + w*0 { = x }
 
x_neu := x*1 + y*0 + z*0 + w*0 { = x }
 
</pascal>
 
</pascal>
Die gleiche Überlegung kann man auch für die anderen 3 Elemente y,z und w machen. Jede dieser Überlegungen ergibt eine Zeile der Identitätsmatrix. Das Ergebnis:
+
Die gleiche Überlegung kann man auch für die Anderen 3 Elemente y,z und w machen. Jede dieser Überlegungen ergibt eine Zeile der Identitätsmatrix. Das Ergebnis:
  
 
[[Bild:Tutorial_Nachsitzen_IdentityMatrix.png]]
 
[[Bild:Tutorial_Nachsitzen_IdentityMatrix.png]]
Zeile 178: Zeile 175:
 
Eine wichtige Operation ist die Matrixmultiplikation. Sie verbindet zwei Matrizen zu einer so, dass sie nacheinander ausgeführt werden. Dabei ist zu bedenken, dass die Reihenfolge einen Unterschied macht: erst drehen und dann verschieben ist ungleich erst verschieben und dann drehen, aber das sollte eich bei der Verwendung von glRotate und glTranslate bereits aufgefallen sein.
 
Eine wichtige Operation ist die Matrixmultiplikation. Sie verbindet zwei Matrizen zu einer so, dass sie nacheinander ausgeführt werden. Dabei ist zu bedenken, dass die Reihenfolge einen Unterschied macht: erst drehen und dann verschieben ist ungleich erst verschieben und dann drehen, aber das sollte eich bei der Verwendung von glRotate und glTranslate bereits aufgefallen sein.
  
/-- Genauere beschreibung wie das geht --/
+
Nun wie multipliziert man Matrizen miteinander? Wie wollen M mit M' multiplizieren. Die Spalten von M' kann man als Vektoren auffassen. Also wendet man einfach M auf die Spalten von M' und bekommt dabei 4 Vektoren. Diese setzt man wieder in einer neuen Matrix nebeneinander und schon hat man M mit M' multipliziert.
  
 
===Matrixinversion===
 
===Matrixinversion===
Zeile 186: Zeile 183:
 
Man hat ein Objekt, dessen Rotation durch eine Matrix beschrieben wird, was generell sinnvoll ist, wenn das Objekt voneinander abhängige Drehungen vollführen soll oder man das lokale Koordinatensystem des Objekts benötigt. Jedenfalls will man nun das Objekt nicht von aussen bestaunen, sondern sich in die Ansicht des Objekts selbst hineinversetzen, so kann man dessen Rotationsmatrix einfach invertieren und schon hat man sein Ziel erreicht. Wen ähnliches interessiert, sollte sich jetzt einmal an mein Kamera Tutorial wagen und schauen, dass er's versteht.
 
Man hat ein Objekt, dessen Rotation durch eine Matrix beschrieben wird, was generell sinnvoll ist, wenn das Objekt voneinander abhängige Drehungen vollführen soll oder man das lokale Koordinatensystem des Objekts benötigt. Jedenfalls will man nun das Objekt nicht von aussen bestaunen, sondern sich in die Ansicht des Objekts selbst hineinversetzen, so kann man dessen Rotationsmatrix einfach invertieren und schon hat man sein Ziel erreicht. Wen ähnliches interessiert, sollte sich jetzt einmal an mein Kamera Tutorial wagen und schauen, dass er's versteht.
  
/-- Genauere beschreibung wie das geht --/
+
Die dazu nötige Rechnerei ist leider nicht ganz harmlos. Ich empfehle hierzu einen Blick in die Wikipedia unter Inverse Matrix oder bessere Matheformelsammlungen bzw. Geometrie oder Lineare Algebra Skripte.
  
 
==OpenGl, Direct3D, IrixGl, MesaGl,... und das Thema Matrizen==
 
==OpenGl, Direct3D, IrixGl, MesaGl,... und das Thema Matrizen==

Version vom 13. Mai 2006, 08:03 Uhr

Vorwort

Immer wieder muss ich feststellen, dass viele, die (mit OpenGl) 3D Anwendungen schreiben, nichts mit der Mathematik dahinter anfangen können. Um das Ein oder Andere zu verstehen oder sich selbst überlegen zu können, ist dieses Wissen aber unabdingbar. Ich möchte mit diesem Artikel helfen, diesen Zustand zu beenden und entsprechends Wissen unter euch verbreiten. Dies und das werded ihr aus der Schule bereits kennen, wenn ihr also etwas überspringen wollt, orientiert euch an den Überschriften.

Trigonometrie am rechtwinkligen Dreieck

Man stelle sich vor, man hat einen Kreis, mit Radius 1. Der Mittelpunkt des Kreises befindet sich auf dem Koordinatensystem Ursprung. An der X-Achse ist ein Winkel ß angetragen:

Tutorial Nachsitzen einheitskreis.gif

An der x-Achse bildet sich dann ein rechter Winkel(wichtig für normale Trigonometrie). Die diesem Winkel gegenüberliegende Seite(r) nennt man Hypotenuse. Die am Winkel ß anliegende Seite(x) ist die Ankathete. Die dem Winkel gegenüberliegende Seite(y) heißt Gegenkathete. Jetzt definiert man folgende Funktionen:

sin(ß) = Gegenkathete / Hypotenuse
cos(ß) = Ankathete / Hypotenuse
tan(ß) = Gegenkathete / Ankathete

Im Einheitskreis(und nur dort) gilt:

sin(ß) = y
cos(ß) = x

da die Länge der Hypotenuse 1 ist(Kreisradius).

Die Umkehrfunktionen dazu sind (in Pascal):

ß = arcsin(sin(ß))
ß = arccos(cos(ß))
ß = arctan(tan(ß))

für ß im Bereich 0° - 90°. In den anderen Quadranten des Koordinatensystems, sind die Umkehrfunktionen nicht für alle Winkel eindeutig zurückzurechnen, hier muss man also ein wenig aufpassen, z.B. gibt arcsin(sin(ß)) im Bereich 90°-180° den Winkel 180° - ß aus. Im übrigen ist auch darauf zu achten, dass die FPU im Bogen- und nicht im Gradmaß rechnet. Umgerechnet werden kann wie folgt:

Tutorial Lineare Algebra deg2rad.png

Für den Umgang mit Sinus und Cosinus gibt es noch ein paar spezielle Formeln, die einem Arbeit abnehmen können:

sin(-ß) = - sin(ß)
cos(-ß) = cos(ß)

sin(90° - ß) = cos (ß)
cos(90° - ß) = sin (ß)

sin²(ß) + cos²(ß) = 1

Bei Bedarf stehen weitere in jeder brauchbaren Formelsammlung, aber meist kommt man mit diesen aus.

Die Welt der Matrizen

Matrizen gelten als das Handwerkszeugs eines 3D Programmierers. Sie sind, wenn man sie einmal verstanden hat, ein mächtiges Werkzeug, das man irgendwann nicht mehr missen mag. Vorher sollten wir aber noch einmal Vertieces in OpenGl (bei D3D dürfte es im übrigen ähnlich, wenn nicht genauso laufen) betrachten und uns erst dann auf Matrizen stürzen.

Vertices und ihr Ursprung

Ein Vertex beschreibt einen Punkt im 3D Raum. Man könnte nun annehmen, dass ein Vertex durch 3 Koordinaten x,y,z beschrieben wird. Das ist ein Trugschluss, denn die meisten 3D APIs verwenden 4-Dimensionale Vertices(x/y/z/w).

Ich denke, zu den 3 ersten Koordinaten muss ich nichts weiter sagen, zur w-Koordinate hingegen schon: w ist normalerweise immer 1.0. Mit glVertex4 kann bei Bedarf auch ein anderer Wert zugewiesen werden. Ist w ungleich Null, so wird ein Vertex als folgender 3-Dimensionaler Punkt interpretiert: (x/w, y/w, z/w). Im Normalfall sollte der Wert für w aber auf 1.0 belassen werden, es sei denn man hat eine interessante Idee, die sich mit einem w ungleich 1.0 besonders schön realisieren lässt. Wen die w-Koordinate interessiert, sollte in der OpenGl Spezifikation unter Coordinate Transformations nachschauen.

Ein Beispiel für die Effekt beim Einsatz von w Koordinaten: Beim ersten Dreieck ist im oberen Punkt w = 1.0, im 2. ist w = 0.5:

Tutorial Nachsitzen wcoord.jpg

Einstieg in Matrizen

Beginnen wir am Anfang mit einer allgemeinen Definition einer Matrix:

Definition:Eine m x n Matrix ist eine Tabelle aus Werten mit n Spalten und m Zeilen.

Die in Direct3D und OpenGl Verwendung findenen Matrizen sind generell 4x4 Matrizen, mit Singles als Elemente:

Tutorial Nachsitzen Matrix4x4.png

Anwendung der Matrix auf einen Vektor

Hat man nun ein 3-Dimensionales Vertex (w=1.0) und möchte diesen durch die Matrix schicken, so rechnet man:

Tutorial Nachsitzen Matrix4x4MulVec.png

Bzw:

x_neu := x*a[1,1] + y*a[1,2] + z*a[1,3] + w*a[1,4]
          {Koeffizienten aus der ersten Zeile der Matrix}
y_neu := x*a[2,1] + y*a[2,2] + z*a[2,3] + w*a[2,4]
          {Koeffizienten aus der zweiten Zeile der Matrix}
z_neu := x*a[3,1] + y*a[3,2] + z*a[3,3] + w*a[3,4]
          {Koeffizienten aus der dritten Zeile der Matrix}
w_neu := x*a[4,1] + y*a[4,2] + z*a[4,3] + w*a[4,4]
          {Koeffizienten aus der letzten Zeile der Matrix}

Wer nun ein Wenig darüber nachdenkt, kommt auf ein Ergebnis:

Die Spalten sind die Bilder der Einheitsvektoren

Die Bedeutung dürfte noch nicht klar sein, aber das kommt bald.

Ist w=1, wie das in fast allen Anwendungen der Fall sein wird, dann beschreibt die letzte Spalte der Matrix eine Verscheibung der Punkte.

Die Identitätsmatrix, oder der Ursprung von glLoadIdentity

Eine der wichtigsten Matrizen ist die, die nichts macht. Also ein Vertex dorthin Projeziert, wo es sich bereits am Anfang befand:

Matrix * V = V

Schauen wir zurück, wie eine Matrix auf ein Vertex angewendet wird:

x_neu := x*a[1,1] + y*a[1,2] + z*a[1,3] + w*a[1,4]

Unser Ziel ist, dass x_neu gleich x ist. Das lässt sich immer erreichen, indem wir den Koeffizienten a[1,1] = 1.0 setzen und die restichen = 0. Dann steht da nämlich:

x_neu := x*1 + y*0 + z*0 + w*0 { = x }

Die gleiche Überlegung kann man auch für die Anderen 3 Elemente y,z und w machen. Jede dieser Überlegungen ergibt eine Zeile der Identitätsmatrix. Das Ergebnis:

Tutorial Nachsitzen IdentityMatrix.png

Ausgehend von dieser Matrix kann man sich jetzt weitere Matrizen überlegen:

Welten verschieben

Überlebenswichtig in 3D Anwendungen dürften die Translationsmatrizen sein, die ein Vertex verschieben. Durch den Umstand, dass die letzte Spalte einer Matrix in OpenGl einfach zum Wert des neuen Vertex dazugezählt wird, lässt sich eine Translationsmatrix sehr einfach realisieren:

Tutorial Nachsitzen MoveMatrix.png

Um den Ursprung drehen

Ein Porsche, den man vor zurück, links, rechts hoch und runterbewegen kann, ist schon was tolles. Viel toller wird er aber, wenn man ihn auch noch aus verschiedenen Blickwinkeln anschauen und frei drehen kann. Den meisten dürfte damit schon klar sein, worauf ich hinaus will: Drehungen mithilfe von Matrizen:

Tutorial Nachsitzen rotz.gif

Drehen um die Z-Achse

Rotationen zusammenstöpseln geht eigentlich recht einfach. Erinnern wir uns zuerst an folgenden Satz: "Die Spalten sind die Bilder der Einheitsvektoren". Mit dieser Hilfe können wir uns jetzt selbst überlegen, wie eine Rotationsmatrix, die um die Z-Achse mit dem Winkel ß dreht, auszusehen hat.

Gehen wir die Einheitsvektoren der Reihe nach ab:

Der Z-Achsen Einheitsvektor(0.0, 0.0, 1.0) bleibt bei unserer Rotation unverändert - man nehme einen Finger, deute damit nach vorne. Nun drehe man diesen Finger um seine eigene Achse, wohin zeigt er? In die selbe Richtung, wie vor der Drehung? So sollte es zumindest sein, ansonsten habt ihr ein anatomisches Problem ;-) Zumindest folgt daraus die letze Spalte der Matrix(sie entspricht dem Vektor): (0.0, 0.0, 1.0, 0.0)

Der X-Achsen Einheitsvektor(1.0, 0.0, 0.0) verändert sich hingegen schon. Mithilfe von Trigonometrie kommt man schnell auf der Lösung Spur. Ein Blick auf das Bild zum Einheitskreis zeigt schnell, dass wir gerade das gleiche Problem zu bewältigem haben: Die Rotationsachse ist in beiden Fällen die Z-Achse. Der Einheitsvektor, der gedreht wird, ist die X-Achse:

x := cos(ß)
y := sin(ß)

womit wir den Inhalt der ersten Spalte der Matrix kennen: (cos(ß); sin(ß); 0; 0)

Das lässt sich jetzt genauso auf den Y-Achsen Einheitsvektor(0.0, 1.0, 0.0) übertragen, man muss nur bedenken in welcher weise sich x und y vertauschen:

x = -sin(ß)
y = cos(ß)

So ergibt sich für die zweite Spalte: (-sin(ß); cos(ß); 0; 0)

Und schließlich können wir eine Matrix für die Drehung um die Z-Achse mit dem Winkel ß beschreiben:

Tutorial Nachsitzen RotZMatrix.png

Tutorial Nachsitzen rotx.gif

Drehen um die X-Achse

Wenn man nun auf die gleiche Weise an die weiteren Drehachsen herangeht, so wird man auf dieses Ergebnis kommen:

Tutorial Nachsitzen RotXMatrix.png

Tutorial Nachsitzen roty.gif

Drehen um die Y-Achse

Tutorial Nachsitzen RotYMatrix.png

Matrixoperationen

Fürs Arbeiten mit Matrizen gibt es ein paar überlebenswichtige Operationen. Ohne diese macht das Arbeiten wenig Spass und würde einem auch wenig bringen.

Ich möchte hier keine genaue Erläuterung über die Funktionsweise dieser Operationen geben, aber dennoch erklären was sie tun und was man damit anstellen kann. Wer diese Operationen verwenden möchte, sollte mal auf Mike Lischkes Homepage vorbeischaun. Dort findet ihr eine Geometry.pas, die diese Funktionen und noch viele mehr beinhaltet. Eine etwas verbesserte und immer wieder aktualisierte Variante liegt dem glScene Projekt bei.

Matrixmultiplikation

Eine wichtige Operation ist die Matrixmultiplikation. Sie verbindet zwei Matrizen zu einer so, dass sie nacheinander ausgeführt werden. Dabei ist zu bedenken, dass die Reihenfolge einen Unterschied macht: erst drehen und dann verschieben ist ungleich erst verschieben und dann drehen, aber das sollte eich bei der Verwendung von glRotate und glTranslate bereits aufgefallen sein.

Nun wie multipliziert man Matrizen miteinander? Wie wollen M mit M' multiplizieren. Die Spalten von M' kann man als Vektoren auffassen. Also wendet man einfach M auf die Spalten von M' und bekommt dabei 4 Vektoren. Diese setzt man wieder in einer neuen Matrix nebeneinander und schon hat man M mit M' multipliziert.

Matrixinversion

Eine invertierte Matrix macht genau das Gegenteil der ursprünglichen Matrix. Verschiebt die ursprüngliche ein Vertex um 3 nach rechts, so schiebt die intervtierte Matrix ein Vertex um 3 nach links(Achtung: nicht alle Matrizen sind invertierbar, Rotations- und Translationsmatrizen lassen sich jedoch immer invertieren). Dies lässt sich sinnvoll bei Kameras einsetzen:

Man hat ein Objekt, dessen Rotation durch eine Matrix beschrieben wird, was generell sinnvoll ist, wenn das Objekt voneinander abhängige Drehungen vollführen soll oder man das lokale Koordinatensystem des Objekts benötigt. Jedenfalls will man nun das Objekt nicht von aussen bestaunen, sondern sich in die Ansicht des Objekts selbst hineinversetzen, so kann man dessen Rotationsmatrix einfach invertieren und schon hat man sein Ziel erreicht. Wen ähnliches interessiert, sollte sich jetzt einmal an mein Kamera Tutorial wagen und schauen, dass er's versteht.

Die dazu nötige Rechnerei ist leider nicht ganz harmlos. Ich empfehle hierzu einen Blick in die Wikipedia unter Inverse Matrix oder bessere Matheformelsammlungen bzw. Geometrie oder Lineare Algebra Skripte.

OpenGl, Direct3D, IrixGl, MesaGl,... und das Thema Matrizen

Wie hat man sich gefreut, als man glaubt Matrizen endlich ein wenig verstanden zu haben und dann das. Die ersten Versuche mit glLoadMatrix und glMultMatrix müssen zwingend schiefgehen. Immer, wenn man nicht vorgewarnt wird. Wer glaubt seine Matrizen einfach mit einem 2 Dimensionalen Array beschreiben zu können irrt. Die Idee ist zwar nicht schlecht, aber aus Performancegründen liegen die OpenGl Matrizen nicht zeilenweise, sondern spaltenweise im Speicher:

Tutorial Nachsitzen GlMatrix.png

Ich persönlich bevorzuge meist, statt dass ich in einem 2D-Array immer mit den Zugriffsvariablen herumwurschtle, den Zugriff auf die Matrix mit einem eindimensionalen Array. Die obige Tabelle hilft dabei, die passene Zelle zu finden.

Kopfschmerzen?

Ahh, wieder eines meiner schrecklichen Tutorials überlebt. Ich hoffe, dass wenigstens ein paar Leute unter euch das ein oder andere Verstanden haben und ich das alles nicht umsonst geschrieben habe (wenns nur einer Verstanden hat, bin ich schon glücklich ;-) ).

...have a lot of fun!

[Nico Michaelis]



Vorhergehendes Tutorial:
Tutorial Lineare Algebra

Schreibt was ihr zu diesem Tutorial denkt ins Feedbackforum von DelphiGL.com.
Lob, Verbesserungsvorschläge, Hinweise und Tutorialwünsche sind stets willkommen.