Tutorial Abseits eckiger Welten: Unterschied zwischen den Versionen

Aus DGL Wiki
Wechseln zu: Navigation, Suche
K (Rechtschreibung und Grammatik)
K (->Delphic)
 
(7 dazwischenliegende Versionen von 5 Benutzern werden nicht angezeigt)
Zeile 7: Zeile 7:
 
== Von Linien und Kurven ==
 
== Von Linien und Kurven ==
  
Dies Kaptitel basiert auf [http://www.gamasutra.com/features/19990611/bezier_01.htm Curved Surfaces Using Bézier Patches von Gabe Kruger]. Übersetzt ins deutsche und natürlich mit der ein oder anderen Änderung.
+
Dies Kaptitel basiert auf [http://www.gamasutra.com/features/19990611/bezier_01.htm Curved Surfaces Using Bézier Patches von Gabe Kruger]. Mit freundlicher Genehmigung übersetzt ins deutsche und natürlich mit der ein oder anderen Änderung.
  
 
=== Prozedurale Linien ===
 
=== Prozedurale Linien ===
Zeile 75: Zeile 75:
 
Als erstes wollen wir versuchen einen kubischen Bézier mit OpenGL Evaluators zu zeichnen. Definieren wir zuerst einmal 4 Kontrollpunkte:
 
Als erstes wollen wir versuchen einen kubischen Bézier mit OpenGL Evaluators zu zeichnen. Definieren wir zuerst einmal 4 Kontrollpunkte:
  
<pascal>
+
<source lang="pascal">
 
     const
 
     const
 
       ctrlpoints : Array[0..3] of Array[0..2] of TGlFloat =
 
       ctrlpoints : Array[0..3] of Array[0..2] of TGlFloat =
 
       ((-4.0, 2.0, 0.0),(-2.0, 4.0, 0.0),(2.0, -4.0, 0.0),(4.0, 2.0, 0.0));
 
       ((-4.0, 2.0, 0.0),(-2.0, 4.0, 0.0),(2.0, -4.0, 0.0),(4.0, 2.0, 0.0));
</pascal>
+
</source>
  
 
Der nächste Schritt ist das Übergeben der Punkte an OpenGL:
 
Der nächste Schritt ist das Übergeben der Punkte an OpenGL:
  
<pascal>
+
<source lang="pascal">
 
     glMap1f(GL_MAP1_VERTEX_3, 0, 1.0, 3, 4, @ctrlpoints[0,0]);
 
     glMap1f(GL_MAP1_VERTEX_3, 0, 1.0, 3, 4, @ctrlpoints[0,0]);
 
     glEnable(GL_MAP1_VERTEX_3);
 
     glEnable(GL_MAP1_VERTEX_3);
</pascal>
+
</source>
  
 
Kleine Erklärung von '''[[glMap1]]f''':
 
Kleine Erklärung von '''[[glMap1]]f''':
Zeile 94: Zeile 94:
 
Wir haben nun zwei Möglichkeiten unseren Evaluator zu zeichnen. Die erste:
 
Wir haben nun zwei Möglichkeiten unseren Evaluator zu zeichnen. Die erste:
  
<pascal>
+
<source lang="pascal">
 
     var
 
     var
 
       i : Integer;
 
       i : Integer;
Zeile 103: Zeile 103:
 
       glEnd;
 
       glEnd;
 
       ...
 
       ...
</pascal>
+
</source>
  
 
'''[[glEvalCoord]]1f''' erzeugt die Vertexdaten, die wir mittels [[glMap1]]f genauer definiert haben (diesmal also nur Vertexpositionen, keine Farben, keine Texturkoordinaten, etc.). Als Parameter werden Werte zwischen u<sub>1</sub> und u<sub>2</sub> eingesetzt.
 
'''[[glEvalCoord]]1f''' erzeugt die Vertexdaten, die wir mittels [[glMap1]]f genauer definiert haben (diesmal also nur Vertexpositionen, keine Farben, keine Texturkoordinaten, etc.). Als Parameter werden Werte zwischen u<sub>1</sub> und u<sub>2</sub> eingesetzt.
Zeile 111: Zeile 111:
 
Es gibt noch eine andere Methode, mit der man die Daten in einem Rutsch an OpenGL weitergeben kann:
 
Es gibt noch eine andere Methode, mit der man die Daten in einem Rutsch an OpenGL weitergeben kann:
  
<pascal>
+
<source lang="pascal">
 
     glMapGrid1f(30, 0.0, 1.0);
 
     glMapGrid1f(30, 0.0, 1.0);
 
     //...
 
     //...
 
     glEvalMesh1(GL_LINE, 0, 30);
 
     glEvalMesh1(GL_LINE, 0, 30);
</pascal>
+
</source>
  
  
Mit [[glMapGrid]]1f stellen wir ein, in wieviele Segmente wir unsere Linie unterteilen wollen und übergeben gleichzeitig den Bereich in der Kurve u<sub>1</sub> und u<sub>2</sub>.</p>
+
Mit [[glMapGrid]]1f stellen wir ein, in wieviele Segmente wir unsere Linie unterteilen wollen und übergeben gleichzeitig den Bereich in der Kurve u<sub>1</sub> und u<sub>2</sub>.
  
 
[[glEvalMesh]]1 zeichnet nun unser gutes Stück als Linie. Gezeichnet werden alle Segmente von 0 bis 30.
 
[[glEvalMesh]]1 zeichnet nun unser gutes Stück als Linie. Gezeichnet werden alle Segmente von 0 bis 30.
Zeile 126: Zeile 126:
 
Die bisherigen Ergebnisse sind noch nicht wirklich überzeugend. Unser Ziel war es immerhin Oberflächen zu zeichnen und keine Linien. Aber weit entfernt sind wir nicht mehr. Beginnen wir damit, wieder unsere Kontrollpunkte zu definieren:
 
Die bisherigen Ergebnisse sind noch nicht wirklich überzeugend. Unser Ziel war es immerhin Oberflächen zu zeichnen und keine Linien. Aber weit entfernt sind wir nicht mehr. Beginnen wir damit, wieder unsere Kontrollpunkte zu definieren:
  
<pascal>
+
<source lang="pascal">
 
   var
 
   var
 
     CtrlPoints2D : Array[0..3] of Array[0..3] of Array[0..2] of TGlFloat;
 
     CtrlPoints2D : Array[0..3] of Array[0..3] of Array[0..2] of TGlFloat;
</pascal>
+
</source>
  
 
Diesmal eine Variable? Ist er krank? Seit wann benutzt er Variablen? Nun ich kanns euch erklären: Ich habe mit mehreren unterschiedlichen Flächen herumgespielt und wollte nicht ständig dabei am Code herumbasteln, also habe ich mir fix eine Routine zum Laden der Punkte geschrieben:
 
Diesmal eine Variable? Ist er krank? Seit wann benutzt er Variablen? Nun ich kanns euch erklären: Ich habe mit mehreren unterschiedlichen Flächen herumgespielt und wollte nicht ständig dabei am Code herumbasteln, also habe ich mir fix eine Routine zum Laden der Punkte geschrieben:
  
<pascal>
+
<source lang="pascal">
 
     procedure LoadCtrlPoints;
 
     procedure LoadCtrlPoints;
 
     var
 
     var
Zeile 147: Zeile 147:
 
       CloseFile(F)
 
       CloseFile(F)
 
     end;
 
     end;
</pascal>
+
</source>
  
 
Ist die billigste Variante, ohne jeglichen Fehlerschutz, aber fürs herumspielen sollte das genügen. Sobald wir unsere Kontrollpunkte geladen haben, sollten wir sie an OpenGL übergeben:   
 
Ist die billigste Variante, ohne jeglichen Fehlerschutz, aber fürs herumspielen sollte das genügen. Sobald wir unsere Kontrollpunkte geladen haben, sollten wir sie an OpenGL übergeben:   
  
<pascal>
+
<source lang="pascal">
 
     LoadCtrlPoints;
 
     LoadCtrlPoints;
 
     glMap2f(GL_MAP2_VERTEX_3, 0.0, 1.0, 3, 4, 0.0, 1.0, 12, 4, @CtrlPoints2D[0,0,0]);
 
     glMap2f(GL_MAP2_VERTEX_3, 0.0, 1.0, 3, 4, 0.0, 1.0, 12, 4, @CtrlPoints2D[0,0,0]);
Zeile 158: Zeile 158:
 
     glEnable(GL_NORMALIZE);
 
     glEnable(GL_NORMALIZE);
 
     glMapGrid2f(40, 0.0, 1.0, 40, 0.0, 1.0);
 
     glMapGrid2f(40, 0.0, 1.0, 40, 0.0, 1.0);
</pascal>
+
</source>
  
 
Die [[glMap2]]f Funktionen haben jetzt ein paar neue Parameter erhalten. Dies sind an sich die gleichen Parameter wie bei den [[glMap1]]f Funktionen, nur dass sie nun doppelt vorhanden sind, für die v Richtung.
 
Die [[glMap2]]f Funktionen haben jetzt ein paar neue Parameter erhalten. Dies sind an sich die gleichen Parameter wie bei den [[glMap1]]f Funktionen, nur dass sie nun doppelt vorhanden sind, für die v Richtung.
Zeile 164: Zeile 164:
 
Schlussendlich wollen wir noch unsere Oberflächen anzeigen:
 
Schlussendlich wollen wir noch unsere Oberflächen anzeigen:
  
<pascal>
+
<source lang="pascal">
 
     glEvalMesh2(GL_FILL, 0, 40, 0, 40);
 
     glEvalMesh2(GL_FILL, 0, 40, 0, 40);
</pascal>
+
</source>
  
 
Hat die Datei "surface.txt" nun folgenden Inhalt:
 
Hat die Datei "surface.txt" nun folgenden Inhalt:
Zeile 201: Zeile 201:
 
Das schöne ist, dass man die Texturierung mit den gleichen Mitteln lösen kann, wie die Oberflächen selbst - mit Evaluators. Definieren wir uns also zuerst einmal ein paar Kontrollpunkte:
 
Das schöne ist, dass man die Texturierung mit den gleichen Mitteln lösen kann, wie die Oberflächen selbst - mit Evaluators. Definieren wir uns also zuerst einmal ein paar Kontrollpunkte:
  
<pascal>
+
<source lang="pascal">
 
     const
 
     const
 
       TexCoords : Array[0..1, 0..1, 0..1] of TGlFloat =
 
       TexCoords : Array[0..1, 0..1, 0..1] of TGlFloat =
 
         (((0.0, 0.0),(0.0, 1.0)), ((1.0, 0.0),(1.0, 1.0)));
 
         (((0.0, 0.0),(0.0, 1.0)), ((1.0, 0.0),(1.0, 1.0)));
</pascal>
+
</source>
  
 
und übergeben die Koordinaten an OpenGL:
 
und übergeben die Koordinaten an OpenGL:
  
<pascal>
+
<source lang="pascal">
 
     LoadCtrlPoints;
 
     LoadCtrlPoints;
 
     glMap2f(GL_MAP2_VERTEX_3, 0.0, 1.0, 3, 4, 0.0, 1.0, 12, 4, @CtrlPoints2D[0,0,0]);
 
     glMap2f(GL_MAP2_VERTEX_3, 0.0, 1.0, 3, 4, 0.0, 1.0, 12, 4, @CtrlPoints2D[0,0,0]);
  
 
     LoadDevilTexture('flowers256.tga');
 
     LoadDevilTexture('flowers256.tga');
 +
    glEnable(GL_TEXTURE_2D);
 +
 
     glMap2f(GL_MAP2_TEXTURE_COORD_2, 0.0, 1.0, 2, 2, 0.0, 1.0, 4, 2, @TexCoords[0,0,0]);
 
     glMap2f(GL_MAP2_TEXTURE_COORD_2, 0.0, 1.0, 2, 2, 0.0, 1.0, 4, 2, @TexCoords[0,0,0]);
 
     glEnable(GL_MAP2_TEXTURE_COORD_2);
 
     glEnable(GL_MAP2_TEXTURE_COORD_2);
 +
   
  
 
     glEnable(GL_MAP2_VERTEX_3);
 
     glEnable(GL_MAP2_VERTEX_3);
Zeile 221: Zeile 224:
 
     glEnable(GL_NORMALIZE);
 
     glEnable(GL_NORMALIZE);
 
     glMapGrid2f(40, 0.0, 1.0, 40, 0.0, 1.0);
 
     glMapGrid2f(40, 0.0, 1.0, 40, 0.0, 1.0);
</pascal>
+
</source>
  
 
Wenn wir jetzt mittels glEvalMesh2(GL_FILL, 0, 40, 0, 40) die Szene rendern, bekommen wir das obige Bild. Simpel, nicht?
 
Wenn wir jetzt mittels glEvalMesh2(GL_FILL, 0, 40, 0, 40) die Szene rendern, bekommen wir das obige Bild. Simpel, nicht?
Zeile 254: Zeile 257:
 
Die OpenGL NURBs sind Teil der GL Utilities und damit bei jeder OpenGL-Implementation dabei. Im Redbook finden sich einige sehr schöne Beispiele, die die Verwendung von Nurbs zeigen. Eine Sache, die die NURBs interessant macht, ist die Möglichkeit sie trimmen zu können. Darunter fällt z.B. das Schneiden von Löchern mitten in die Fläche. Eine genaue Besprechung von NURBs würde den Rahmen dieses kleinen Tutorials sicher bei weitem sprengen, so dass ich beschließe hier meine kleine Einführung in das Thema Curved Surfaces zu beenden.
 
Die OpenGL NURBs sind Teil der GL Utilities und damit bei jeder OpenGL-Implementation dabei. Im Redbook finden sich einige sehr schöne Beispiele, die die Verwendung von Nurbs zeigen. Eine Sache, die die NURBs interessant macht, ist die Möglichkeit sie trimmen zu können. Darunter fällt z.B. das Schneiden von Löchern mitten in die Fläche. Eine genaue Besprechung von NURBs würde den Rahmen dieses kleinen Tutorials sicher bei weitem sprengen, so dass ich beschließe hier meine kleine Einführung in das Thema Curved Surfaces zu beenden.
  
[[Benutzer:Nico Michaelis|Delphic]]
+
[[Benutzer:Delphic|Delphic]]
  
  
{{TUTORIAL_NAVIGATION| - | [[Tutorial_Selection]] }}
+
{{TUTORIAL_NAVIGATION| - | [[Tutorial_Renderpass]] }}
  
 
[[Kategorie:Tutorial|Abseits eckiger Welten]]
 
[[Kategorie:Tutorial|Abseits eckiger Welten]]

Aktuelle Version vom 23. Juli 2009, 16:09 Uhr

Abseits eckiger Welten

Einführung

Unsere Welt ist, schlecht, eintönig und eckig. Wirklich? Eckig? Schauen wir uns noch einmal um. An vielen Stellen ja, aber nicht überall. Rundungen sind sogar recht häufig anzutreffen. Ein Blick um mich herum offenbart es. Maus, Lampe, Joystick,... Vieles hat Rundungen. Ein Blick auf das was bisher bei DGL zu sehen war, zeigt: alles eckig :-(. Das muss geändert werden. Runden wir unsere Virtuellen Welten ein wenig ab - unser Hilfsmittel: Curved Surfaces


Von Linien und Kurven

Dies Kaptitel basiert auf Curved Surfaces Using Bézier Patches von Gabe Kruger. Mit freundlicher Genehmigung übersetzt ins deutsche und natürlich mit der ein oder anderen Änderung.

Prozedurale Linien

Gerade Strecken lassen sich allein durch die Angabe eines Start und Endpunktes beschreiben. Mit einer Liniengleichung lassen sich beliebig viele Punkte auf dieser Strecke berechnen. Eine solche Gleichung ist z.B.:

   Q(t) = (1 - t)*P0 + t*P1

Der Parameter t hat dabei Werte von 0 bis 1. P0 und P1 sind die Endpunkte der Strecke. Setzt man den Parameter t = 0 ein, so ist das Ergebnis P0. Setzt man 1 ein ist das Ergebnis P1. Die Gleichung könnte man etwas umschreiben:

   Q(t) = B0(t)*P0 + B1(t)*P1

Wobei gilt:

   B0(t) = 1 - t
   B1(t) = t

Man nennt B0(t) und B1(t) die Basis Funktionen der Liniengleichung. Ändern wir diese Gleichung nochmals ein wenig ab:

Tutorial Abseits eckiger Welten linearsum.gif

Dies ist die analytisch bearbeitete Fassung der Liniengleichung, die meisten Beschreibungen parametrischer Kurven werden in dieser Form gezeigt. Kurven? Klingt so als wären wir bereits am Ziel? Fast.

Evolution zu Bezier Kurven

Wie erzeugen wir nun eine Kurve in parametrischer Form, ählich der obigen? Wir wollen eine Kurve beschreiben, die durch die Endpunkte geht und dazwischen sich einem anderen Punkt annähert:

Tutorial Abseits eckiger Welten linesconnected.gif

P0 und P2 sind die Endpunkte, P1 ist der Kontrollpunkt, dem wir uns annähern wollen. Man könnte nun einen Punkt Pa(t) zwischen P0 und P1 interpolieren und das gleiche mit einem Punkt Pb(t) zwischen P1 und P2. Der gewünschte Punkt Q(t) auf der Kurve kann dann errechnet werden, durch interpolieren zwischen den Punkten Pa und Pb:

Tutorial Abseits eckiger Welten interpolated.gif

In mathematischen Formeln ausgedrückt:

   Pa(t) = (1 - t)P0 + t * P1
   Pb(t) = (1 - t)P1 + t * P2

   Q(t)  = (1 - t)Pa(t) + tPb(t) =
         = (1 - t)²P0 + 2(1 - t)tP1 + t²P2

Der Lohn der Mühen:

Tutorial Abseits eckiger Welten quadraticbezier.gif

Wir können nun die Gleichung von oben umschreiben:

Tutorial Abseits eckiger Welten quadraticsum.gif

Nun haben wir eine Definition einer quadratischen Bézier Kurve entwickelt. Es gibt eine einfache Formel für die Basis Funktionen von Bezier Kurven für einen beliebigen Grad. n ist der Grad, i beziffert die Basis Funktion und reicht damit von 0 bis n:

Tutorial Abseits eckiger Welten basisfunctions.gif

Ein Beispiel einer solchen Kurve mit dem Grad 3:

Tutorial Abseits eckiger Welten kubikbezier.gif

Evaluators

Wir können jetzt Bezier Kurven von Hand berechnen und, mit etwas Umsicht das ganze von 2D auf 3D transformieren. Das kann man vielseitig einsetzen und man kann gleichzeitig auf Detaileinstellungen in einem Programm reagieren - je höher der Detailgrad, desto feiner werden die Kurven aufgelöst. Ebenso kann man sie schön für Kamerafahrten verwenden.

Interessant ist jedoch, dass OpenGl auch die Möglichkeit besitzt, solche Kurven selber zu rendern. In reinem OpenGl kann man hier Evaluators verwenden.

Erster Versuch: Evaluator Kurve

Als erstes wollen wir versuchen einen kubischen Bézier mit OpenGL Evaluators zu zeichnen. Definieren wir zuerst einmal 4 Kontrollpunkte:

    const
      ctrlpoints : Array[0..3] of Array[0..2] of TGlFloat =
       ((-4.0, 2.0, 0.0),(-2.0, 4.0, 0.0),(2.0, -4.0, 0.0),(4.0, 2.0, 0.0));

Der nächste Schritt ist das Übergeben der Punkte an OpenGL:

    glMap1f(GL_MAP1_VERTEX_3, 0, 1.0, 3, 4, @ctrlpoints[0,0]);
    glEnable(GL_MAP1_VERTEX_3);

Kleine Erklärung von glMap1f:

Die 1 steht dafür, dass wir eine Linie beschreiben wollen. Eine 2, also glMap2f stünde für eine Fläche. Der erste Parameter beschreibt den Typ an Daten, den wir übergeben - in unserem Fall also dreidimensionale Vertexkoordinaten. Die nächsten 2 Parameter u1 und u2 beschreiben den Start- und Endwert unserer Kurve. Sie beschreiben sozusagen die Werte, die der Parameter t aus dem vorigen Kapitel haben muss, um eine komplette Kurve zu beschreiben. Der Parameter stride sagt aus, wie viele Floats vom Startfloat des einen Kontroll- bis zum Startfloat des nächsten Kontrollpunkts liegen. In unserem Fall also 3(Wegen Array[0..2] - hat 3 Elemente). Der vorletzte Parameter order sagt aus, wie viele Kontrollpunkte wir übergeben wollen. Zu guter Letzt noch ein Pointer auf die Kontrollpunkte, und wir haben unsere Schuldigkeit getan.

Wir haben nun zwei Möglichkeiten unseren Evaluator zu zeichnen. Die erste:

    var
      i : Integer;
      ...
      glBegin(GL_LINE_STRIP);
        for i := 0 to 30 do
          glEvalCoord1f(i/30);
      glEnd;
      ...

glEvalCoord1f erzeugt die Vertexdaten, die wir mittels glMap1f genauer definiert haben (diesmal also nur Vertexpositionen, keine Farben, keine Texturkoordinaten, etc.). Als Parameter werden Werte zwischen u1 und u2 eingesetzt.

Tutorial Abseits eckiger Welten openglcurve.gif

Es gibt noch eine andere Methode, mit der man die Daten in einem Rutsch an OpenGL weitergeben kann:

    glMapGrid1f(30, 0.0, 1.0);
    //...
    glEvalMesh1(GL_LINE, 0, 30);


Mit glMapGrid1f stellen wir ein, in wieviele Segmente wir unsere Linie unterteilen wollen und übergeben gleichzeitig den Bereich in der Kurve u1 und u2.

glEvalMesh1 zeichnet nun unser gutes Stück als Linie. Gezeichnet werden alle Segmente von 0 bis 30.

Von Linien zu Flächen

Die bisherigen Ergebnisse sind noch nicht wirklich überzeugend. Unser Ziel war es immerhin Oberflächen zu zeichnen und keine Linien. Aber weit entfernt sind wir nicht mehr. Beginnen wir damit, wieder unsere Kontrollpunkte zu definieren:

  var
    CtrlPoints2D : Array[0..3] of Array[0..3] of Array[0..2] of TGlFloat;

Diesmal eine Variable? Ist er krank? Seit wann benutzt er Variablen? Nun ich kanns euch erklären: Ich habe mit mehreren unterschiedlichen Flächen herumgespielt und wollte nicht ständig dabei am Code herumbasteln, also habe ich mir fix eine Routine zum Laden der Punkte geschrieben:

    procedure LoadCtrlPoints;
    var
      u, v : Integer;
      F : Text;
    begin
      AssignFile(F, 'surface.txt');
      Reset(F);
      FillChar(CtrlPoints2D[0,0,0], SizeOf(CtrlPoints2D), 0);
      for u := 0 to 3 do
        for v := 0 to 3 do
          ReadLn(F, CtrlPoints2D[u,v,0], CtrlPoints2D[u,v,1], CtrlPoints2D[u,v,2]);
      CloseFile(F)
    end;

Ist die billigste Variante, ohne jeglichen Fehlerschutz, aber fürs herumspielen sollte das genügen. Sobald wir unsere Kontrollpunkte geladen haben, sollten wir sie an OpenGL übergeben:

    LoadCtrlPoints;
    glMap2f(GL_MAP2_VERTEX_3, 0.0, 1.0, 3, 4, 0.0, 1.0, 12, 4, @CtrlPoints2D[0,0,0]);
    glEnable(GL_MAP2_VERTEX_3);
    glEnable(GL_AUTO_NORMAL);
    glEnable(GL_NORMALIZE);
    glMapGrid2f(40, 0.0, 1.0, 40, 0.0, 1.0);

Die glMap2f Funktionen haben jetzt ein paar neue Parameter erhalten. Dies sind an sich die gleichen Parameter wie bei den glMap1f Funktionen, nur dass sie nun doppelt vorhanden sind, für die v Richtung.

Schlussendlich wollen wir noch unsere Oberflächen anzeigen:

    glEvalMesh2(GL_FILL, 0, 40, 0, 40);

Hat die Datei "surface.txt" nun folgenden Inhalt:

   -1.5 2.0 -1.5
   -0.5 -1.0 -1.5
   0.5 -1.0 -1.5
   1.5 -2.0 -1.5
   -1.5 2.0 -0.5
   -0.5 1.0 -0.5
   0.5 -2.0 -0.5
   1.5 0.0 -0.5
   -1.5 0.0 0.5
   -0.5 0.0 0.5
   0.5 0.0 0.5
   1.5 0.0 0.5
   -1.5 1.0 1.5
   -0.5 0.0 1.5
   0.5 -1.0 1.5
   3.0 -2.0 1.5
 

dann könnte das enstehende Bild so aussehen:


Tutorial Abseits eckiger Welten owncurve.gif

Texturen und anderes Feintuning

Es ist schon bemerkenswert, wie leicht man Curved Surfaces in OpenGL zeichnen kann. Was fehlt, ist die Möglichkeit, die Flächen, die man erzeugt hat, auch noch zu texturieren. Jedem dürfte klar sein, was das für Vorteile hat.

Tutorial Abseits eckiger Welten texturedcurve.gif

Das schöne ist, dass man die Texturierung mit den gleichen Mitteln lösen kann, wie die Oberflächen selbst - mit Evaluators. Definieren wir uns also zuerst einmal ein paar Kontrollpunkte:

    const
      TexCoords : Array[0..1, 0..1, 0..1] of TGlFloat =
        (((0.0, 0.0),(0.0, 1.0)), ((1.0, 0.0),(1.0, 1.0)));

und übergeben die Koordinaten an OpenGL:

    LoadCtrlPoints;
    glMap2f(GL_MAP2_VERTEX_3, 0.0, 1.0, 3, 4, 0.0, 1.0, 12, 4, @CtrlPoints2D[0,0,0]);

    LoadDevilTexture('flowers256.tga');
    glEnable(GL_TEXTURE_2D); 

    glMap2f(GL_MAP2_TEXTURE_COORD_2, 0.0, 1.0, 2, 2, 0.0, 1.0, 4, 2, @TexCoords[0,0,0]);
    glEnable(GL_MAP2_TEXTURE_COORD_2);
    

    glEnable(GL_MAP2_VERTEX_3);
    glEnable(GL_AUTO_NORMAL);
    glEnable(GL_NORMALIZE);
    glMapGrid2f(40, 0.0, 1.0, 40, 0.0, 1.0);

Wenn wir jetzt mittels glEvalMesh2(GL_FILL, 0, 40, 0, 40) die Szene rendern, bekommen wir das obige Bild. Simpel, nicht?

Noch viel schöner wirds, wenn man feststellt, dass das gleiche nicht nur mit Texturkoordinaten funktioniert. Hier mal eine kleine Übersicht über die Parameter von glMapxf:

Konstante: Parameter:
GL_MAPx_VERTEX_3 x,y,z Vertex-Koordinaten
GL_MAPx_VERTEX_4 x,y,z,w Vertex-Koordinaten
GL_MAPx_INDEX Farb-Index Werte
GL_MAPx_COLOR_4 R,G,B,A Farbwerte
GL_MAPx_NORMAL Normalen-Richtungen
GL_MAPx_TEXTURE_COORD_1 s Textur-Koordinaten
GL_MAPx_TEXTURE_COORD_2 s,t Textur-Koordinaten
GL_MAPx_TEXTURE_COORD_3 s,t,r Textur-Koordinaten
GL_MAPx_TEXTURE_COORD_4 s,t,r,q Textur-Koordinaten

NURBs

Die OpenGL NURBs sind Teil der GL Utilities und damit bei jeder OpenGL-Implementation dabei. Im Redbook finden sich einige sehr schöne Beispiele, die die Verwendung von Nurbs zeigen. Eine Sache, die die NURBs interessant macht, ist die Möglichkeit sie trimmen zu können. Darunter fällt z.B. das Schneiden von Löchern mitten in die Fläche. Eine genaue Besprechung von NURBs würde den Rahmen dieses kleinen Tutorials sicher bei weitem sprengen, so dass ich beschließe hier meine kleine Einführung in das Thema Curved Surfaces zu beenden.

Delphic



Vorhergehendes Tutorial:
-
Nächstes Tutorial:
Tutorial_Renderpass

Schreibt was ihr zu diesem Tutorial denkt ins Feedbackforum von DelphiGL.com.
Lob, Verbesserungsvorschläge, Hinweise und Tutorialwünsche sind stets willkommen.